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The Use of Positive Matrices for the Analysis 
of the Large Time Behavior of the Numerical 

Solution of Reaction-Diffusion Systems* 

By Luciano Galeone 

Abstract. In this paper we study the numerical solution of nonlinear reaction-diffusion 
systems with homogeneous Neumann boundary conditions, via the known 9-method. 

We show that if conditions for the positivity of solutions are imposed, then the study of the 
asymptotic behavior of the numerical solution can be done by means of the theory of 
stochastic matrices. 

In this way it is shown that the numerical solution reproduces the asymptotic behavior of 
the corresponding theoretical one. In particular, we obtain the decay of the solution to its 
mean value. 

An analysis of the asymptotic stability of the equilibrium points and the convergence of the 
numerical scheme is given based on the use of M-matrices. 

Finally we consider the case in which the nonlinear term satisfies a condition of quasi- 
monotonici ty. 

1. Introduction. Many applications in various fields necessitate the numerical 
solution of systemns of M nlonliniear, reaction-diffusion equations: 

(1.1a) 
au = D AU + F(U), (X,^ t) E Q X R+ , at 

where S2 E RV is a bounded domain with sufficiently smooth boundary and A is the 
Laplace operator in R'. D is a diagonal matrix whose elements are positive constants 
d,, i = 1, 2, ... M, and F(U) = ( fi(U), f2(U), . . . JM(U)) is a smooth function. 

The solution U(x, t) = (U,(x, t), U2(x, t), UM(x, t)) of (l.la) is subject to 
the initial conditions 

(Il.lb) U(x,0) = Uo(x) for xinQ2, 

together with the homogeneous Neumann boundary conditions: 

(1.lc) au =0 onaui2XR, an 

where au/an is the outward normal derivative at a point x E Mi. 
Some examples of applications of the equations (1.1) can be found in the study of 

epidemics and many other biological topics, in ecology, chemistry and in problems 
dealing with the transmission of nerve pulses [6], [7]. 
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The boundary conditions (1.ic) indicate that the habitat 2 is isolated during the 
evolution of the system. 

The physical meaning of solution U demands that the numerical solution which is 
determined should be sufficiently able to simulate the behavior of the theoretical 
solution. Therefore we are most interested in the study of the behavior of the 
numerical solution and its asymptotic properties. 

To this end, this paper describes some results by using a class of known methods 
(0-methods). First of all we shall require the positivity of the numerical solution. 
This will allow us to use some results we can find in the study of compartmental 
systems and Markov chains [3]. Therefore, during our work we shall use mainly the 
properties of M-matrices and positive matrices. 

The paper is organized as follows. 
In Section 2 we introduce the known 0-methods to discretize the system (1.1). 
In Section 3 we observe that, if we require the positivity of the solution, then the 

matrices, which are in the discrete scheme, are stochastic. We therefore recall some 
properties of the stochastic matrices by using the group generalized inverse. 

Thanks to these properties, in Section 4, we prove that, under suitable conditions, 
the numerical solution decays as time increases to a spatially homogeneous vector, 
which is its suitably weighted mean value. Such behavior reflects that of the 
theoretical solution, as shown in [5] and as studied in many other papers. We also 
analyze the case in which the numerical sequence converges towards a zero of the 
nonlinear term F(U). 

Finally, in the last section, we obtain certain results concerning the asymptotic 
stability for the equilibrium points of the discrete system and the asymptotic 
convergence of the numerical solution. We also derive an error estimate by imposing 
a monotonicity assumption on F. 

In this paper we shall consider the parallelepiped S = Ilm [0, b,] in U-space, and 
we shall suppose that F is a smooth function which satisfies 

(1.2) F(U) ns(U) O< for Uin aS, 

where ns(U) is the outward normal on S. Then, it is known [5] that S is an invariant 
region for (1.1), that is, if U((x) E S for x E Q, then, for t > 0, U(x, t) belongs to S. 

We shall also assume that a constant c exists, such that 

(1.3) ' (U) <c forU E S,i= 1,2,...,M. 
aul 

2. Finite Difference Approximation. For the discretization in the space variables, 
finite difference approximations or Galerkin procedures may be chosen [13], [14], 
whereas for the discretization of the resulting semidiscrete system in the time 

variable, we consider the well-known class of 0-methods [ 13]. 
Let h be an increment in the xi direction (j = 1,2,...,v) and ALt in the time 

direction. Let xk = (klh, k2h,...,k,h) for k E Z' and tn = nAt for n E N. If we 

put IN = {k E ZIJ I Xk E Q}, Xk with k E IN indicates a nodal point and N the 

number of the nodal points. 
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For any 0, 0 s 0 s 1, and 4 = 1 - 0, we approximate the solution of the system 
(1.1) at the time tn+1 by means of the solution of the finite difference system: 

(2.1) (I + ?o?d.L1u ' = (I-AP4diL)u7 ? i/tf(un), i= ,2,... M, 

where I is the N X N identity matrix, u7 and fi(Un) are N-dimensional vectors, with 
elements U ik /(Unk2 U k) for k = 1, 2,.. ,N, respectively, and un is the 
vector (un, U2n.. . ,Un)'. The element Unk is an approximation of the value U(xk, tn). 

In (2.1), the matrix -L/h2 is a discrete operator, uniformly consistent with A in 
(1.1); that is, if U(x, t) is a bounded function with bounded derivates up to second 
order and it satisfies (1. Ic), then it is, for every i: 

sup - Lun -AUi((xkt t) -"O ifh -*O. 
k EJN h2 i,k ik 

It is known that the matrices L = (Lrs), derived from the problem (1.1a), subject 
to the condition of (1. Ic), have the following properties: 

N 

(2.2) Lrr>O,Lrs?O fors#r and E Lrs=O, Vr= 1,2,...,N. 
s =1 

Such matrices are irreducible with eigenvalues 0 = A1 < 2 < * * * NS Some semi- 
discretization methods are such that the corresponding matrix L is positive semidefi- 
nite. 

Example 2.1. If we have v = 1 and we use three-point difference approximation, L 
is given by 

2 -2 
-1 2 -1 

(2.3) L 

-1 2 -1 
-2 2 

Instead, by using piecewise linear functions in the Galerkin procedure, we have 

-1 -1- 

(2.4) L= . 

-1 2 -1 

which is a symmetric matrix. 
It is known that there are N linearly independent eigenvectors of the matrices L, 

given in the above examples. In the following, we shall suppose this for any matrix 
L. 

In this paper we shall deal with square, nonnegative matrices, i.e. matrices 
A = (Ars) with Ars > 0 for all r, s and we denote A > 0. If Ars > 0 for all r, s we 
shall put A > 0. 

Definition 2.1. A square matrix A with Ars s 0, for all s # r, is called an M-matrix 
if it is nonsingular and A-1 > 0. Moreover, it is called a singular M-matrix if it is 
singular and if, for all scalar e > 0, A + EI is an M-matrix. 
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We recall the following known results [14]: 

THEOREM 2.1. If A, with Ars < O for all s # r, and Arr > O for all r, is an irreducible 
diagonally dominant matrix, then A - ' > 0. 

THEOREM 2.2. If A is a nonnegative matrix, and p(A) is its spectral radius, then 
p(A) < 1, if and only if (I - A)-' exists and (I -A)-' > 0. 

Finally we observe that the matrix L in (2.1), thanks to the properties (2.2), is a 
singular M-matrix. 

3. Properties of the Difference Scheme. Let L denote the MN X MN block-diag- 
onal matrix, with block given by 

d.A 2L, i = 1,2,...,Ml Lh2 

and I the MN X MN identity matrix. Then the system (2.1) takes the form 

(3.1) (I + OLO)u1 
- (I - #L )un + A tF(un), 

where F u n) is the vector (f, (Un), f2( Un),.. .nf,( U n)). 

It is known that, in the linear case (F = 0), the scheme is unconditionally stable if 
and only if 2 < 0 < 1. On the contrary, if 0 < 0 < 2, the scheme is stable only 
under a restriction on At/h2 [13]. 

However, the usual stability conditions do not insure that the solution is positive 
and that the asymptotic behavior of the solution of the analytical problem is 
preserved for the solution of the scheme (3.1). 

To avoid this, a stronger form of stability might be necessary [1], [9] such that the 
finite difference operator defined by (3.1) is of a positive type (i.e., if u" is 
nonnegative, then un ' is also nonnegative). 

In fact, we have the following theorem, where S = II [0, b1] N, and c the constant 
given in (1.3): 

THEOREM 3. 1. Let us choose 0 < a < 1. If the following restrictions on the mesh 

(3.2) 
t 1 - 

- 
a At < 

a 

are satisfied, where 1 = h2max r-r NM(LI)rr, then, if u) E S, for all n > 0 the 
solution of (3.1) is nonnegative and belongs to S. 

Proof. Thanks to the properties of the matrix L, (I + O(At/h2)d1L), for all 
= 1, 2,... ,M, is an irreducible M-matrix and Theorem 2.1 insures that it is 

(I + O(At/h2)d L)-' > 0. From the first part of (3.2) we also have 

(I - *p(At/h2)diL) > O. 

Moreover, we observe that, if u_ E S, f(un) > -cu7n. In fact, if we consider the 
vector i' = (ut,...,u71,O, u?+I,...,um), from the condition (1.2), we have i(fn) 

> 0 and then 

fi ( u ) =fi ( ) + diag. u U7 -CUn. 
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It then follows that 

(i I- Pt diL)un + t\tf(u ) >ki - c)I -] 

and thus we obtain u"+ l > 0. 
Similarly, we can see that u + I S and prove the result of the theorem by 

induction. O 
We notice that if 0 1 (implicit scheme), the first part of (3.2) is absent. 
With the positivity assumption of the matrices in (3.1), we can now prove the 

following results: 

THEOREM 3.2. If the restriction on the mesh 

l\t 1 
h / 

is satisfied, then the matrix 

(3.3) T I+ h tdiL (I ( { d )L 

is stochastic and primitive, for all i = 1, 2,. M. 

Proof. From (2.2) it follows that the matrix (I - 4(At/h2)d L) is stochastic. 
Moreover, it is p((I + O(tlt/h2)d.L)-') = 1, and since the vector (, whose elements 
are all one, is an eigenvector of L associated with the null eigenvalue, we also have 
(I + O(At/h 2 )djL)-'t = (. Then (I + O(At/h 2)diL)-' is also stochastic. 

Now, if 0 # 0, from (I + O(At/h2)dL)-' > 0 it follows that T1 > 0, and then T 
is an irreducible and primitive matrix. 

On the other hand, if 0 -0, it is T1 = (I - (At/h2)diL) and, since Ti is 
irreducible and the diagonal elements of T1 are positive, it is known that T N-1 > 0. 

Remark 3.1. We observe that 

(i) 

( 1+ 0 .4djL<( I ?h2djL )<IA2djL)( I +a2djL) -L 

(ii) if the matrix L is symmetric, as for the example in (2.4), the matrix T1 is doubly 
stochastic. 

We recall now some results in the context of nonnegative irreducible matrices that 
are part of the classical Perron-Frobenius theorem. 

THEOREM 3.3. If T is a nonnegative irreducible matrix, then 
(i) p(T) is a simple eigenvalue; 

(ii) T has a positive eigenvector corresponding to p(T). 
Then, if we consider a stochastic, primitive matrix T, since for every stochastic 

matrix p(T) = 1, it is a simple eigenvalue. Hence, X = 0 is a simple eigenvalue of the 
matrix A = I - T and rank(A) = rank(A2). 

Now it is known [4] that the latter condition is equivalent to the existence of the 
group inverse of A; i.e. to that of the matrix AD, such that 

ADAAD = ,4D, AAD = ADA and AADA = A. 
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The properties of the matrix AD can be used to obtain classical results of the Markov 
chain theory [4]. 

For example, some known [101 fundamental results for regular (i.e., ergodic and 
noncyclic) Markov chains are given by 

THEOREM 3.4. Let T be the transition matrix for a regular Markov chain, and let 
A =I - T. Then 

(a) limkTk = R, where R = I-AAD; 
(b) the matrix R is a stationary stochastic matrix, i.e. each row of R is given by the 

same probability vector. In particular, R = (vT, where v is the left eigenvector of T 
associated with p(T) = 1, such that vTt = 1; 

(c) TR = RT = R and R2 = R; 
(d) if p is an eigenvector of T, associated with p(T) = 1, then p is a constant vector; 
(e) if T is a doubly stochastic matrix, then it is v = a/N, where N denotes the order 

of T. 

Proof. The proofs of these results can also be found in [2], [4]. 
(a) It is known that a transition matrix T for a regular chain is similar to a matrix 

of the form 

I1 01 
L? T,] 

with limk -j 0. Then, it is easy to obtain the form of the matrix AD and to prove 
the result. 

(b), (c) From the definition of AD, it follows that RA = AR = 0 and hence 
TR = RT = R. Then, each row of R is a left eigenvector of T, associated with 
p(T) = 1. Moreover, R is stochastic, since Tk is a stochastic matrix for all k E N. 

(d) If Tp p, then Tkp p and hence Rp = p. 
(e) The eigenvector v is now a constant vector, such that vTt = 1. D 
On the other hand, it is known that if a stochastic matrix T is the state transition 

matrix for a Markov chain, then T is primitive, if and only if the chain is regular. 
Then, the result shown in the preceding theorem can be used for the primitive 
stochastic matrices Ti, given by (3.3), in order to study the large time behavior of the 
solution un of (3. 1). 

As a first immediate consequence, we have the next result: 

THEOREM 3.5. Let the hypotheses of Theorem 3.2 be satisfied. Let T denote the 
NM X NM block-diagonal matrix 

(3.4) T= (I+ L) - '(I - L) 

and v the left eigenvector associated with the eigenvalue X1 = 0 of the matrix L. 
Then limk Tk = R, where R is a block-diagonal matrix, with all equal blocks, given 

by RI = VT(. 

Proof. From (i) in Remark 3.1, it follows directly, for all i = 1, 2, ... , M, that 

vTT= VT VTL = 0. 

Then, the proof is immediate from Theorem 3.4. D 
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The above theorem shows that the stationary matrix R associated with the matrix 
T is independent of the matrix D, of h and At and of the parameter 0 in (2.1). 

If we consider, for example, the matrix L given by (2.3), we obtain 

(3.5) v N 1( I I 1) 

Instead, since the matrix L given by (2.4) is symmetric, from (ii) in Remark 3.1, and 
(e) in Theorem 3.4, it follows that 

T 1 
(3.6) N 

Finally, we observe that from the preceding results the next remark also follows. 
Remark 3.2. Let the hypotheses of Theorem 3.2 be satisfied. Then the matrices 

(I H d,L) and I-v;> h d,L) 

for all i 1,2,..., M, are stochastic and primitive, and the matrix R1, defined in 
Theorem 3.5, is the stationary matrix corresponding to them. 

4. Large Time Behavior of the Numerical Solution. First of ali we observe that, for 
any vector y of dimension N, the vector R, y has all its elements equal to vTy. If v is 
the vector given in (3.6), which we obtain when L is symmetric, then the elements of 
R,y are the mean of v. On the other hand, if v is the vector given in (3.5), the 
elements of RI y are a weighted mean of y, where the weight is due to the way in 
which the boundary conditions are discretized. Example 2.1 is given only for v = 1, 
but a similar result is obtained when v > 1. 

The aim of the following theorem is to prove that, if 

(4.1) d2X2 > k-III-RIJ 

holds true, where X2 is the smallest eigenvalue other than 0 of the matrix L, 
d = min I -M { dl} and k is the maximum of the norm of the Jacobian of F for all 
points in S, then the difference between the numerical solution and its mean value 
(which might be "weighted") tends exponentially towards zero, as tn increases. The 
same type of result is proved in [8] by means of a different technique, using energy 
estimates. 

The assumption (4.1) shows that the diffusion coefficient must be large relative to 
a quantity which measures the "strength" of the nonlinear interaction. 

THEOREM 4.1. Let the hypotheses of Theorem 3.1 be satisfied and let the matrix L be 
symmetric and positive semidefinite. If (4.1) is true, then we obtain for the solution ut 

of (3.1) that 

-lu -RuI < (1 Atq)nUo - RUII, 

where 

dX2/h2 - kilI - Rl 
q 1 + O(At/h2)X2d 
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Proof. We observe that, for i= 1, 2,.. ., M, the N coordinates of the vector 

f(R1u1I, R1u . R1uM) are all equal. Therefore we have f,(Ru") R1 (Ru'), that 
iS, 

(4.2) RF(Ru') = F(Ru"). 

So it follows that 

(4.3) (I - R)F(u") - (I - R)(F(un) - F(Run)) = (I - R)JF(u" - Ru"), 

where JF denotes the Jacobian matrix of F evaluated at a point in S. Now, since it 
follows directly from Remark 3.2 that 

(I - 4L1)R = R(I - 4L1) = R, (I + OLI)R = R(I + OLI) = RI 

we have, from (3.1), 

(I + OL )(un + - Run-+) = (I -4L1)(un - Run) + At(I - R)F(un) 

and hence, for (4.3), 

(4.4) (I + O9L )(Un+l - RUn+) I (I I- Lj )(Un -RU n 

+At(I - R)JF(u" - Ru"). 

We denote the nonnegative eigenvalues of the matrix L by X1 < X2 < ... *< A N and 
a system of orthonormal eigenvectors, which correspond to the eigenvalues Uk = 1 

- 4(At/h 2)d AXk (k = 1,2,...,N) of the matrix I - 4A t/hl2)d1L, by {wl}. We 
have pl - 1, and so we can take w = for all i = 1,2,.. .,M. 

Therefore, for u"', we can put un EN= akWk and so we obtain 
N 

Rlu, = (1VT V akWk l 
k = I 

because, for Remark 3.2, v is the left eigenvector of I - t(At/h2)d L and it is 
VT 1 

On the other hand, 

I 
h ~2 

d 
) 

u' = 
awi + 

E 
a ykWk 

so that we obtain 

||(I At2 , ( Un R U)| 'lu-unill 
(I< p d L)U - Ru7) i P2IIUn - R u71 

In the same way we can also see 

(i + 0 - d L (Uun+) - R ( I + O AtdiX)IIUn' - Ru n+'ll 

These inequalities together with (4.4) yield 

-+ -Run'II < 
I - P(At/h2)dX2 + AtIlI - RIIIIJFII Iu -, Ilun+I-Run+III -<- - 

I + O(LAt/h 2)dX2 
Iu'-Rnl 

from which the proof follows. O 
Remark 4.1. If the matrix L is not symmetric the result of Theorem 5.1 is still true 

if there exists a nonsingular positive diagonal matrix E such that E L has a 
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complete system of orthonormal eigenvectors. In this case the euclidean norm is 
substituted by the norm defined by the matrix E. 

Remark 4.2. We would obtain a similar result if in the scheme (3.1) there were 
F( u"+ l ) instead of F( u" ), that is, if we consider a nonlinear scheme. 

Remark 4.3. By (3.1) and Remark 3.2 we have 

(4.5) Ru"--1 Ru' + A tRF(u'). 

If F is a function which takes a nonpositive value in S, since Ru' 2 0 for all n, the 
sequence {Ru'"} decreases to a limit. Under the hypotheses of the above theorem, the 
sequence {u"'} is also convergent. In this case, if u* denotes the limit, we also have 
F(u*) = 0. 

This is true even without the previous condition on F; in fact, from (4.2) it follows 
that 

(4.6) RF(u') = F(Ru') + RJF( u' - Ru'), 

and so (4.5) becomes 

(4.7) Ru"'l Ru' + LYitF(Ru') + i\tRJF(uu - Ru'). 

Therefore, if the hypotheses of Theorem 4.1 are true and the sequence { u ' } 
converges, then it converges to a spatially homogeneous point u* such that F( u*) = 0. 

Remark 4.4. According to Theorem 4.1, by (4.7), the vector Ru' is the solution of 
the equation 

(4.8) Ru'"' Ru' + A\tF(Ru') + g' 

where g' is a vector such that 

g91 'cl(1 -ztq) foralli= 1,2,...,M 

with cl a positive constant. Therefore, for n large enough, we can consider Ru" and 
then u' as an approximation of the numerical solution of the ordinary differential 
equation dV/dt = F(V). 

Finally, let us suppose that a point u* exists such that F(u*) 0 O. If u* #& 0, it 
must be u* - Tu*, that is, u is an eigenvector which corresponds to p(T) - 1. Then, 
thanks to (d) in Theorem 3.4, u* is a spatially homogeneous equilibrium point of 
(3.1), and, moreover, the only spatially homogeneous equilibrium points correspond 
to zeros of F. Therefore, Remark 4.3 says that, if the hypotheses in Theorem 4.1 are 
satisfied, the problem (3.1) has no nonconstant solutions in S. 

5. Stability and Convergence. Let {u' } and (v'"} be two sequences in S given by 
(3.1); if we put E, = - VP, it follows that 

(5.1) E = (T+ At(I + OLl)1JF)Efl 

where again JF denotes the Jacobian of F for some points in S. Therefore, if 

(5.2) p(T + At(I + OLI) 1JF) < 1 

for JF in S, both sequences tend to the same limit. So, if we consider u* E S, such 
that F(u*) 0 O, which exists thanks to condition (1.2), u* is the unique asymptoti- 
cally stable equilibrium point, since the sequence of constant value u* is a solution 
of (3.1). 
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We denote by JF the Jacobian matrix in S. Then, if - in S has positive diagonal 
elements and it is strictly diagonally dominant, that is, if a constant 8 > 0 exists such 
that 

(5.3) (-JF)kk I I(-JF)kJ I> 8 for all k, 

then, if the hypotheses of Theorem 3.1 are satisfied, we have 

IIBIK ? (1 - SAt), 

where B =I-, t(bL -JF) 

In fact, since B has positive diagonal elements, from (2.2) it follows that 

IIBI1 c max {1 - At(P(Ll)kk - (JF)kk) + 'At E (I4(LL)kjI +I (JF)kul)} 
k j# 

max { - At[(-JF)kk E (JF)kJ I 

In this case, we can derive an error bound between the exact solution of (1.1) and the 
approximant computed from (3.1), which is O(/ t) with respect to time, uniformly in 
time. 

Let Tn denote the local truncation error, and assume that there is a constant c2 
such that IITll. ? c2\t(/t + h2). Then we can prove the following theorem. 

THEOREM 5.1. If the hypotheses of Theorem 3.1 and the additional assumption (5.3) 
on F are satisfied, then 

IIEn,I1o < (1 - 8At)nIIE0II + 2 (/t + h2), 

where En =Un - U(tn). 

Proof. We observe that, from the properties of the matrix L, 

IIEn+?11o K< IBIKOOIIEnlloo + IIT n1Io.- 

Then we have 

IIEn+I1Ioo < (1 - 8At)IIEnlloo + c2At(At + h2) 

and the proof follows by induction. D 
In many applications the nonlinear term satisfies the following property [12]: 
Definition 5.1. The function F is said to be quasimonotone with respect to u in S if 

the matrix JF in S has nonnegative off-diagonal elements. 
In this case the following result holds. 

THEOREM 5.2. Let -JF be an M-matrix in S, and let the hypotheses of Theorem 3.1 
hold. Then the condition (5.2) is satisfied. 

Proof. As observed at the end of Section 2, L is a singular M-matrix, therefore, 
thanks to the hypotheses, the matrix LI - AtJF is an M-matrix too. Thus, the matrix 

C = I - 4Li + AtJF 

is such that I - C is nonsingular and its inverse is positive. Since, using Theorem 
3.1, we have C ? 0, the result follows from those of Theorem 2.2. D 
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Remark 5.2. Let the function F be quasimonotone. Then, under the hypotheses of 
Theorem 3.1, the following implication holds: if uo, v? belong to S and uo ? vo, then 
u v' for all n E N. 

Now let us consider an arbitrary matrix H, and let H? be the matrix obtained by 
replacing the off-diagonal elements of H by their absolute values. 

Then we have the following results: 

THEOREM 5.3. Let the hypotheses of Theorem 3.1 be assumed true. If the matrix -J 
is an M-matrix in S, then the condition (5.2) is satisfied. 

Proof. We observe that, if we put 

C I I- bLI + AtJF 

thanks to the previous theorem, we have p(C) < 1. Since we can see that I C I< C, 
then p(l C l) < p(C). Therefore, the result follows by observing that, for any matrix 
C, p(C) < p(I CI). C] 

Thanks to this result we can then use the theory of the M-matrices to have 
sufficient conditions for the asymptotic stability of the equilibrium points of the 
equations (3.1). 

As an example, we give the following theorem, the proof of which can be found in 
[2]. 

THEOREM 5.4. Let A be a matrix with nonpositive off-diagonal elements. Then the 
following propositions are equivalent: 

(i) A is an M-matrix. 
(ii) A has all positive diagonal elements, and there exists a diagonal matrix D > 0 

such that D- AD is a strictly diagonally dominant matrix. 
(iii) There exists a symmetric, definite positive matrix W, such that A W + WA' is 

definite positive. 
(iv) The real part of each eigenvalue of A is positive. 

Therefore, for our purpose it is sufficient that the matrix -J+ satisfies one of the 
propositions of Theorem 5.3. 

Finally, we observe that the condition on - required in Theorem 5.1 may be 
replaced by (ii) in Theorem 5.4 for -+ . If a proposition in this theorem holds, then 
an error bound can be found analogous to the one shown in Theorem 5.1. 

Istituto di Analisi Matematica 
Universitai degli Studi di Bari 
Palazzo Ateneo 
Bari, Italy 

1. C. BOLLEY & M. CROUZEIX, " Conservation de la positivite lors de la discretisation des problemes 
d'evolution paraboliques," RAIRO Anal. Numer., v. 12, 1978, pp. 237-245. 

2. A. BERMAN & R. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 
New York, 1979. 

3. V. CAPASSO & S. L. PAVERI-FONTANA, "Some results on linear stochastic multicompartmental 
systems," Math. Biosci., v. 55, 1981, pp. 7-26. 

4. S. L. CAMPBELL & C. D. MAYER, Generalized Inverses of Linear Transformations, Pitman, London, 
1979. 

5. E. CONWAY, D. HOFF & J. SMOLLER, "Large time behavior of solutions of systems of nonlinear 
reaction-diffusion equations," SIAMJ. Appl. Math., v. 35, 1978, pp. 1-16. 



472 LUCIANO GALEONE 

6. P. C. FIFE, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., Vol. 
28, Springer-Verlag, New York, 1979. 

7. W. E. FITZGIBBON & H. F. WALKER, Nonlinear Diffusion, Pitman, London, 1977. 
8. L. GALEONE & L. LOPEZ, "Decay to spatially homogeneous states for the numerical solution of 

reaction-diffusion systems," Calcolo, v. 19, 1982, pp. 193-208. 
9. D. HOFF, "Stability and convergence of finite difference methods for systems of nonlinear 

reaction-diffusion equations," SIA M J. Numer. A nal., v. 15, 1978, pp. 161-1177. 
10. J. G. KEMENY & J. L. SNELL, Finite Markov Chains, Springer-Verlag, New York, 1976. 
11. J. P. LASALLE, "Stability theory for difference equations," Studies in Ordinary Differenttial Equations, 

Math. Assoc. Amer., 1978. 
12. R. H. MARTIN, "Asymptotic stability and critical points for nonlinear quasimonotone parabolic 

systems," J. Differential Equations, v. 30, 1978, pp. 301-423. 
13. R. D. RICHTMYER & K. W. MORTON, Difference Methods for Initial Value Problems, Interscience, 

New York, 1967. 
14. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. 


	Cit r219_c222: 
	Cit r221_c224: 


